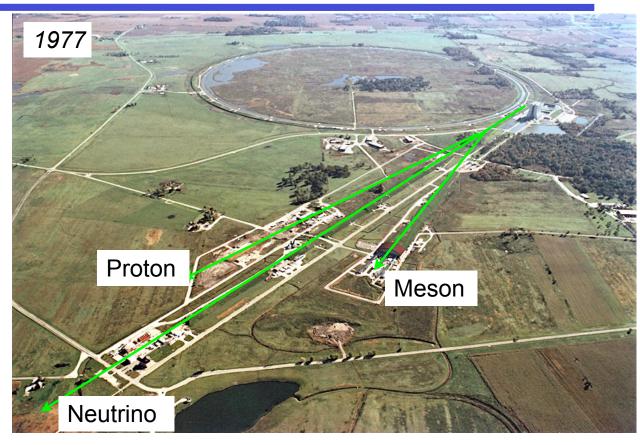


Tevatron-based Facilities beyond Run II

Mike Syphers

Accelerator Advisory Committee Meeting

August 8, 2007

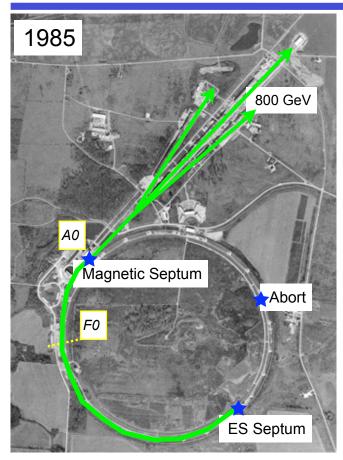

Fermilab

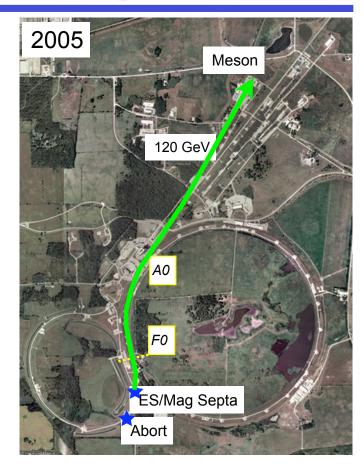
- Short history
- Present configuration for Fixed Target
- Two Options for after Run II
 - > 120/150 GeV Fixed Target
 - > 800 GeV Fixed Target

Fixed Target History

- Main Ring ran fixed target program until 1982
- Tevatron ran FT 1983-2000
 - > shared time as Collider, ~50/50

- MR: 400 GeV (typ.), 3x10¹³ ppp
- Tev: 800 GeV (typ.), 2-2.5x10¹³ ppp
 - > slow + fast resonant extraction



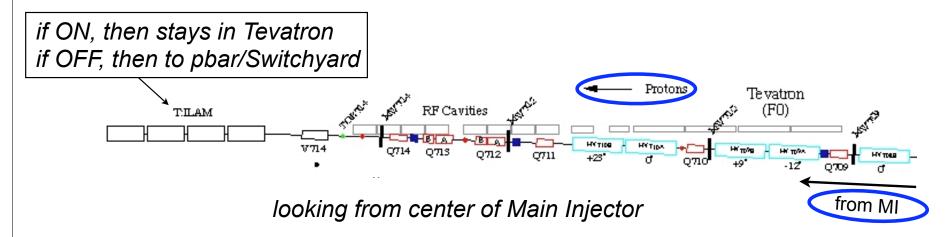

Enter Main Injector

- With the commissioning of the Main Injector, and the full push of the collider physics program, fixed target physics was relegated to 120 GeV from the new synchrotron.
- This program, dubbed Switchyard 120 (SY120), began operation in 2004.
- The "F0" straight section is the switch point
 - > beam from MI to Tev is injected at FO
 - > beam from MI to antiproton source passes through FO
 - then, through Tev tunnel to F17 location, and out to pbar
 - > beam from MI to SY120 passes through FO
 - then, through Tev tunnel to AO, and out to Switchyard

pre-MI and post-MI FT Configurations

- MR/Tev: beam extracted from A0 straight section
- MI: transport to FO, thru MR remnant, to AO and out...

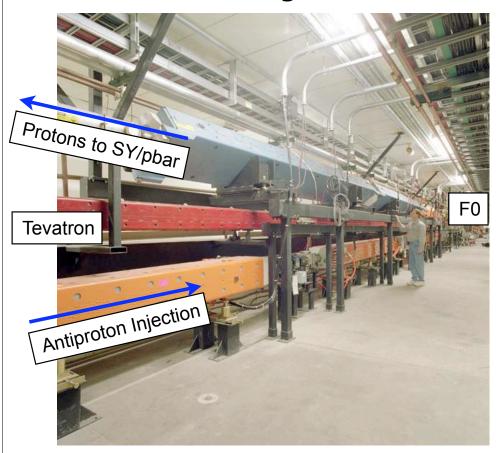
Tevatron Configurations


- pre-2000, would push/pull Fixed Target equipment with D0 detector, A0 abort
- CO abort was proton-only; rated for high rate, high intensity fixed target operation.

	pre-MI FT	Run II Collider	
<i>A</i> 0	Extr. Channel	Abort	< hi-β
ВО		"CDF"	< low-β
CO	Abort	(BTeV)	
DO	ES septa	"DO"	< hi/low-β
EO	injection	instrum'tn	
FO	RF	RF / injection	

FO Straight Section w/ Main Injector

 The Main Injector ties into the Tevatron tunnel at FO, where Tevatron RF cavities are also located



Beam approaches injection magnetic septa from below; if septa are on, beam is deflected vertically and eventually kicked onto the Tevatron closed orbit; if septa are off, beam passes through and on toward either pbar source or to the SY120 beam line

Main Ring "Remnant"

Remaining Main Ring elements are used to transport beam through Tevatron tunnel.

- Final Destinations:
 - F17 --> pbar production
 - A0 --> to Switchyard

Switchyard 120

- "Main Ring Remnant" is used to transport beam from F0 to F17 (for pbar production) and/or on toward A0 and the Switchyard/Meson Test Facility.
- SY120 beam line runs at 120 GeV, but with Power Supply upgrades could probably reach 150 GeV.
- Present Operation:
 - ➤ When running, typically pulse one 120 GeV ramp ~ every 2 mins.
 - $\sim 1 \times 10^{12}$ (1 Tp) spilled (slow resonant extraction) over a 4 sec flat-top
 - i.e., 250 Gp/s (peak), 8 Gp/s (ave), 3.3% d.f.

List of SY120 Users since MI

List of Test Beam Memoranda of Understanding (MOU):

- T970: DHCAL Detector Research Under review
- T969: GammeV Under review (Magnet Test Facility)
- T968: T2K Muon Monitor Proto. Under rev. (MINOS hall)
- T967: Muon q-2 Calorimeter Test Signed
- T966: Monolithic pixel detector for ILC Signed
- T965: PSiP Photosensors Experiment completed
- T964: ILC GEM Chamber Characteristics Taking data
- T963: STAR Muon Telescope Detector Signed
- T962: Mini Liquid Argon TPC Under review (MINOS hall)
- T959: Microparticle Shielding Assessment Completed
- T958: FP420 Fast Timing Test Taking data
- T957: NIU Tail Catcher/Muon Test Taking data
- T956: ILC Muon Detector Tests Taking data
- T955: RPC Detector Tests Taking data
- T953: U. Iowa Cerenkov Light Tests Taking data

- T951: ALICE EMCAL Prototype Test Experiment completed
- T950: Vacuum Straw Tracker Taking data
- T945-Add. 1: Muon Veto Detector for COUPP Taking data
- T945: COUPP Bubble Chamber Taking data
- T943: U. Hawaii Monolithic Active Pixel Det. Experiment completed
- T941: UIowa PPAC Test Experiment completed
- T936: US/CMS Forward Pixel Experiment completed
- T935: BTeV RICH Experiment completed
- T933: BTeV ECAL Experiment completed
- T932: Diamond Detector Signed
- T931: BTeV Muon Experiment completed
- T930: BTeV Straw Experiment completed
- T927: BTeV Pixel Experiment completed
- T926: RICE Experiment completed

see... http://www-ppd.fnal.gov/MTBF-w/

Program Impact

- SY120 reflects small impact on other operations
 - > very infrequent time line interruptions for 120 GeV ramps
 - > one MI pulse (2.4 sec, say) in standard two minute time line: 2% hit on remaining program demanding beam from the Main Injector
- On other hand, may say that SY120 program limited due to the fact that it interrupts other higherpriority programs that demand beam from the Main Injector --
 - > antiproton production, NuMI

A Unique Facility

- As the world's first superconducting synchrotron the Tevatron was able to deliver fixed target beams at nearly twice the particle energy of any other facility.
- While other SC synchrotrons have been built since, none have the ability to ramp rapidly to full field and thus support a viable fixed target program at particle energies near 1 TeV
- With the Collider Run II program end nearing, some are considering fixed target options again...
 - \triangleright high statistics v_{μ} scattering experiment (NusOnG)
 - > Kaon physics
 - > More demand for detector (e.g., ILC) test beams
 - > ?? see: http://www.fnal.gov/directorate/Longrange/Steering Public/documents.html

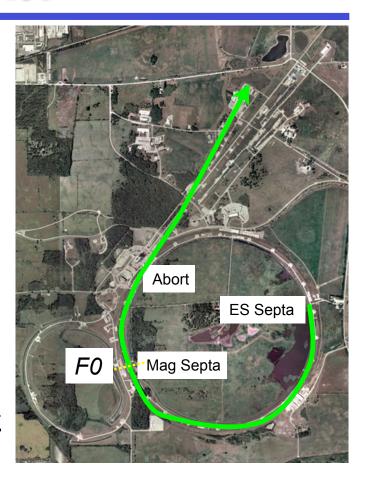
Two Fixed Target Options to Consider

Option One --

- Operate Tevatron as a "stretcher ring" to store and provide beam to the test beam facility, or to future experiments that can tie to the extracted beam line.
 - operate at injection energy of 150 GeV (and upgrade the beam line to SY150), or at 120 GeV
 - "easy" to implement almost immediately

Option Two --

- > Resurrect high-energy (800 GeV) fixed target capability
 - though components still exist, would require more down time than Option One to implement


Issues for both:

> demands of experimental programs, and operating costs

TEV120-150

- Can use the FO injection septum as an extraction septum (reverse its polarity after injection; needs a new polarity switch)
- Install electrostatic septum near FO, or perhaps CO
 - > CO -- presently "unused"
- resurrect slow-spill feedback system ("QXR")
 - > fast air-core quadrupole mags
 - > may wish to upgrade electronics

Performance Issues

- Is there room (aperture) for extraction at 120?
 - ➤ beam at 120 GeV is 2.5 times larger than at 800 GeV
 - however, 120 GeV extraction has been made to work in MI with similar aperture constraints
 - > Tevatron did extract at lower energies (400 GeV) upon commissioning (1983)
 - Emittance through injector chain much better controlled today than during previous Fixed Target times; though "blown up" during extraction process, more room for generating necessary step size across septa
 - > would need further verification, but not unreasonable to assume 120 GeV extraction could be made to work

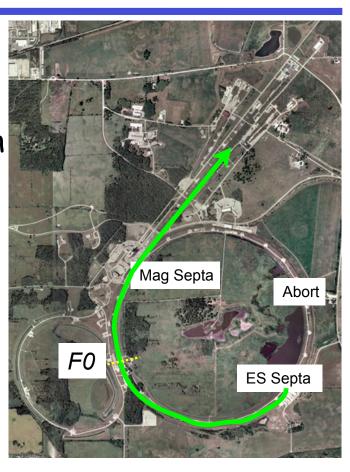
intensity limitations

- > Tevatron Fixed Target program ran at 20-28 Tp per pulse
- ➤ limited by intensity dependent instabilities at higher energy (typ. ~ 600 GeV) as momentum spread reduced
- > Transverse impedance of Tevatron reduced during Run II
 - Lambertson Magnets identified as major sources, and beam tube liners introduced; greatly stabilized transverse motion
- Also, 30 Tp was about limit of injector; today, the MI can deliver 40-45 Tp per pulse, and two pulses can be used to fill the Tevatron --> 80 Tp! Probably way too large, but could possibly consider 40 Tp as reasonable intensity goal at 120 GeV, and acknowledge higher intensities perhaps possible...

- Abort at A0 can handle it...
 - > to extent that we equate 80 Tp @ 120 GeV with 10 Tp @ 980 GeV (today's Run II operation)
 - > Naturally, fault conditions, etc., would need verification
- Tevatron would be run DC at 120/150: no snapback, tune drift, etc.; more quench margin
- Beam can be stored in Tev, and spilled "on demand" at different rates at different times
- Many/most fixed target users want smooth beam spill; could consider use of barrier buckets to get rid of 53 MHz component; or, pre-condition in the MI ahead of time. Many variants could be explored.

Examples of possible particle rates, for comparison

N _{max}	Cycle (sec)	dN/dt (Gp/sec, ave)	dN/dt (Gp/sec, max)	POT/yr (10 ¹⁸ /yr)	duty factor	hit on MI pgm
1 Tp (1 pulse)	120	8	250	0.17	3.3%	2.5%
30 Tp (15+15)	3600	8	8	0.17	99.9%	0.08%
30 Tp (15+15)	120	250	260	5	97.5%	2.5%
40 Tp (20+20)	60	660	700	14	95%	5%
50 Tp (1 pulse)	15	3300	4200	70	80%	10%


Obe.

Scenarios assume 1.5 sec MI cycle, 3 sec in Tev for debunching and/or other "preps"; 66% of year operation

TEV800

- Proposed neutrino expt needs high enegy (~1 TeV)
- RF at F0 precludes extraction there; extract at A0
- Install electrostatic septum either near AO, or else at DO
- Extraction:
 - > if fast res. extr., need "QXR"
 - perhaps could form few, long bunches and use kickers to avoid ES septa (??)
 - would work out exact scenario with the experiment

- We know that 800 GeV slow extraction works by design; however, intensity limitations at high energy were always an issue
 - today's high intensity limit at high energy unknown, following septum magnet beam tube upgrades, but should be improved over FT runs of past
 - also, beam damper systems much improved these days
 - But note: neutrino expt. proposal: 2.5x Tev record intensity
- Abort at CO -- decommissioned with BTeV in sight
 - > would need to re-commission extraction kickers (may need new pulse forming network) and extraction magnets
 - \triangleright 28 Tp @ 800 GeV = 3.5 MJ; 75 Tp --> 10 MJ
 - > need to re-examine inst. rates onto abort block, etc.

Ramp-rate & magnet issues

- Power Supplies and RF capable of delivering 55 GeV/s (used prev. in FT mode); may be desirable to upgrade some dump switch equipment in PS system
- Magnets perhaps capable of higher rates
 - would need more RF; stick with standard rate
- Neutrino program wants lots of beam in short amount of time -- i.e., pulses (or, "pings") rather than slow spill
- > Thus, use above ramp rate to make a 36-40 sec cycle, with a ~1 sec flat-top for extracting many (5-50) pulses

- Early FT running in 1980's resulted in many magnet failures
 - > bus lead restraints within cryostat identified and fixed
 - > since then, ~250,000 cycles between magnet failures
 - (this rate includes failures of non-standard Tev magnets)
 - > Note: neutrino exp wants 1.5e20 POT w/ 7.5 TP/cycle
 - --> ~2 millions cycles ---> ~8 failures likely
 - > need to either have enough spares to last through the experimental program, or re-institute capabilities of repairing or constructing magnets
- If 8-12 failures is the right scale, then enough spares should exist for the NusOnG experiment

Particle Extraction

- ➤ In previous FT running, typically 60 sec cycle, with ~25-28 Tp/pulse, spilled over a 20-23 sec flat-top, giving roughly a 33-40% duty factor
- > During slow resonant extraction, beam was "pinged" ("fast" resonant extraction) to the neutrino experiments
- May be that few, long bunches could be formed in Tev (or prepped in MI) and then could be kicked out with kicker magnets (kick out 8 bunches of 10 Tp each, say)
 - Single-turn extraction was cleanly performed (test conditions) in Tevatron w/ 10 Tp.
- ➤ If only 1-2 neutrino experiments in Switchyard, then would deliberate the extraction method depending upon the needs of the users -- both methods seem feasible

Summary

- A first look at two possible Fixed Target Options:
 - > 120/150 GeV "stretcher ring"
 - > 800 GeV FT redux, for neutrino program
- Stretcher -- "easy" to implement; fast turn-around time; SY120 program/beam line exists; Kaon program may need higher intensities -- yet to be demonstrated, but not out of question
- Neutrino Beam -- much to re-install, but mostly still exists; hi-intensity an issue, needs addressing (we know Z/n is better, but good enough? dampers? beam loading? abort system adequate?)

Summary -- 2

- As stated before, Tevatron is a unique facility for providing high energy fixed target beams
- Before dismantling the Tevatron and its infrastructure, should be sure that it truly has lived out its useful life
- Both options: could use more formal study/review; may wish to perform some beam/paper studies in near future to further ensure the feasibility of these options
- Further reading:
 - http://beamdocs.fnal.gov/AD-public/DocDB/ShowDocument?docid=2849